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ABSTRACT 

 

A significant challenge to the Armed Forces today is the development of tactics, 

techniques, procedures, and equipment that will enable success in the small-scale 

combats that characterize Military Operations Other Than War (MOOTW).  This thesis 

develops an agent-based simulation methodology for modeling MOOTW combat 

scenarios.  The methodology combines agent-based modeling with discrete event 

simulation in a software package called AgentKit.  AgentKit is used to model a riot 

control problem for an experiment that pits two kinds of tactics against two different 

kinds of crowds.  This simulation yields insights into the scenario modeled and 

demonstrates the usefulness of agent-based simulation for the exploration of tactical 

concepts in a MOOTW context.  
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EXECUTIVE SUMMARY 

 

 Security during Military Operations Other Than War (MOOTW) presents special 

challenges to the U.S. Armed Forces.  Of particular concern to this thesis is the encounter 

between a small unit of peacekeepers and a rioting crowd.  This thesis develops a model 

of this scenario with the goal of exploring tactical concepts.  The chosen method of 

modeling is driven by the peculiarities of MOOTW conflict. 

These kinds of small-scale encounters are very much dependent upon the actions 

of individuals.  The success of MOOTW missions in today’s era of intense media 

scrutiny can be easily negated by the failings of individual members of the forces 

conducting these missions.  Often, these failings can be attributed to a lack of adequate 

preparation, leadership, or simply faulty tactics, techniques, and procedures (TTP).  Since 

the primary goal in peacekeeping is to minimize violence and casualties, both to the force 

and to the local populace, improved TTP’s are an important step.  The model we desire 

should reflect the effect of individual actions, capture the process by which casualties 

occur, and allow the implementation of different TTP’s.  

This thesis develops an agent-based simulation methodology in order to model a 

riot control scenario.  The goal of generating the simulation is to gather a better 

understanding of the process of MOOTW small-scale encounters.  Because these are still 

abstract models, the results of these simulations should not be viewed as rigorous 

predictions about the relative worth of one tactical concept versus another.   In testing 

different tactical concepts and studying the functioning of the model, the researcher can 

gain insight as to why a tactic may work in a certain setting.  This insight enables the 

generation of better TTP’s.  

The simulation was generated with a software package, called AgentKit, written 

in Java by the author.  It is an extension of Simkit, a discrete-event simulation library.  

The agent model used is a derivation of John Holland’s software agent. 

The scenario pits a small peacekeeper detachment guarding a valuable site against 

the attack by an angry mob.  The mob transitions from an initially peaceful state to a 

violent state where they assault the peacekeepers with stones.  The peacekeepers are 

armed with imperfect non-lethal weapons.  Their goal is to defend the site until the arrival 
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of reinforcements, which is fixed for the scenario.  Two Measures Of Effectiveness 

(MOE) are used:  expected hits per peacekeeper and expected hits per rioter.  It should be 

noted that achieving a minimum for the second MOE is meaningless if the first MOE is 

high - it would indicate that the rioters are winning.  Two tactics are tested:  a reactive 

tactic that only returns fire, and a proactive tactic that fires on the most violent crowd 

members to try and break up the crowd.  Two forms of mobs are generated:  one with an 

explicit leader and one without.   

The simulation was animated with simple caricatures that enabled the user to 

compare results with observed actions.  The animation assisted in determining the causes 

of certain outcomes. 

Experimental results showed that there was a significant drop in casualties for the 

peacekeepers and the rioters with the use of the proactive tactic.  The proactive tactic 

proved capable of breaking up the crowd most of the time.  Leadership in the crowd did 

not prove to be a significant factor statistically.  This may have been a reflection of some 

of the decisions made in the design of the experiment as opposed to either a) a fault of the 

model, or b) an indication of the threat posed by crowd leadership. 

This thesis demonstrated how this method of simulation may be used to develop 

insight into the dynamics of a riot control scenario.  Furthermore, it highlighted the 

potential usefulness of agent-based simulation to serve as a tool in the development of 

tactical concepts. 
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I. INTRODUCTION 

A. AREA OF RESEARCH 

Since the end of Cold War, the U.S. and Allied armed forces have been 

increasingly committed to Military Operations Other Than War (MOOTW).  MOOTW 

places a greater demand on the training and preparedness of individual service members 

because of the potential for individual actions at the lowest level to have profound impact 

on the success of these operations.  The ability of small units of security forces to succeed 

against a variety of low-intensity threats dictates the success of MOOTW.  Riot control 

presents a special challenge. 

Research by the Armed Forces into MOOTW combat has intensified in recent 

years.  However, while research into the more traditional realms of military force 

application has benefited from a significant body of simulation models, MOOTW 

researchers have little to choose from in the way of simulation. 

Software agents are a relatively new paradigm in simulation.  They provide for 

the capability to model complex issues from the bottom up.  Many complex systems have 

a seemingly ordered behavior at the aggregate level that is not easily explained given an 

understanding of the behavior of the individual components that form the system 

(Holland, 1995).  Researchers have employed agent-based simulations to study a variety 

of phenomena from natural processes such as bee hives and ant colonies to human ones 

such as cooperative game strategies.  Recently, agent-based simulations have been 

applied to warfare.  This thesis develops an agent-based simulation methodology in order 

to model a riot control scenario.  This methodology can serve as a tool for the study of 

security and tactics for forces involved in Military Operations Other Than War 

(MOOTW).   
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B. MILITARY OPERATIONS OTHER THAN WAR 

Since 1993 U.S. and Allied forces have increasingly been committed to Military 

Operations Other than War (MOOTW), particularly operations involving peacekeeping 

and humanitarian assistance.  MOOTW presents a broader array of challenges than 

conventional warfare.  Instead of being able to focus on the destruction of the enemy, 

leaders at every level are encumbered by the primacy of political considerations in 

MOOTW (Joint Pub. 3-07, 1995).  Often, military forces do not have a readily 

identifiable foe on which to focus.  Instead, the mission is often ambiguous and shifting 

with numerous parties involved:  criminal groups, the general populace, warlords, ethnic 

minorities, Non-Governmental Organizations (NGO), allied armed forces, and other 

government agencies.  In Bosnia, for instance, the NATO Stabilization Force (SFOR) 

peacekeepers have to deal with a population comprised of three separate, mutually 

antagonistic ethnic groups.  The peacekeeping effort is further complicated by the diverse 

political objectives of the nations supporting the peacekeeping process.  (Scharfen, 1998) 

Within the services, MOOTW is having an increased impact on armed forces 

training, equipment, and doctrine.  In recent years a great deal of effort has gone into 

preparing for campaign level success in these operations.  U.S. forces can be very 

successful at this level of operations because of their ability to conduct the substantial 

logistic effort that accompanies these kinds of operations.  The U.S. forces also provide a 

wealth of services:  medical, engineering, transportation, administration, policing, legal, 

and security. (Joint Pub. 3-07, 1995)  The many MOOTW deployments in the 1990s have 

improved U.S. forces’ ability to work with not just Allied forces and other government 

agencies but Non-Government Organizations as well. (Walter, 1998)   

The unfortunate part of this rosy picture is that we live in the age of the sound bite 

and CNN.  A MOOTW operation may accomplish all of its other stated objectives - feed 

the hungry, keep warring parties separated, enforce treaties, rebuild infrastructure - but in 

the eyes of the world be plagued by scandal due to the failings of individual troops to 

handle the challenges of MOOTW.   

The little incidents of human failure that get swallowed up by the aggregation of 

violence in conventional warfare rise prominently to the fore in today’s era of intense 
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media scrutiny.  The success of the Kosovo operation has been tarnished by a U.S. 

soldier’s rape and murder of a Kosovar child.  His unit is now under investigation for 

possible systematic abuses of the local populace, which may have set the stage for the 

soldier’s heinous crime.  Earlier in the Balkans, four U. S. Soldiers surrendered without a 

fight to Serbian forces that crossed the border into Macedonia, arguable because of the 

failure of their unit to institute proper security measures.  During the Vietnam War, the 

lack of training and mental preparedness that drove National Guard troops to fire on 

unarmed college students at Kent State assisted in galvanizing the anti-war movement.  

Arguably, the ramifications from the failures of individuals in MOOTW have far greater 

reach than in conventional warfare.  

In MOOTW, decision making is forced down to a far lower level than in 

conventional warfare.  In a conventional war, individual fighting men have fewer 

decisions to make.   For instance, the decision to engage is often a matter of simply 

spotting an enemy within range of organic weapons.  In MOOTW, individual security 

personnel have to make difficult decisions, deciding what is an incident that justifies a 

violent response and to what level, non-lethal or lethal.  Squad leaders have to know 

when to call for reinforcements against a developing riot situation or when simply to talk 

to a gathering of locals frustrated with the lack of services.  A rifleman manning a check 

point needs to do more than check identification.  He or she has to scan the area 

constantly for a variety of threats, from snipers in windows to thieves seeking a valuable 

piece of American-made equipment.   In Vietnam, when U.S. troops took fire, their 

typical response was massive, indiscriminate amounts of fire.  Troops in MOOTW must 

follow Rules of Engagement, which often require a positive target identification of the 

target and a clear backstop (no bystanders) before permitting return fire.  Further, with 

the employment of non-lethal weapons, there are typically technical restrictions on the 

use of the weapon to maximize the probability of not killing the target.  (Kenny, 2000)   

Individuals assigned to security operations in MOOTW are typically armed for 

war but are ostensibly waging peace.  While they must confront violence, destruction of 

the opponent is an option of last resort, if at all.  The potential encounter is characterized 

by the asymmetries of the participants’ combat potential and of their intents.  While 

peacekeeping forces have the desire to minimize conflict, the populace may likely harbor 
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elements who seek to re-ignite conflict.  Peacekeeping troops carry all manner of very 

lethal as well as non-lethal devices.  Meanwhile, the populace they face will have very 

low individual combat potential, but collectively be capable of vast destruction (witness 

the Los Angeles riots of 1992).  Operating from within the safety blanket of the 

population one may find various criminal groups, terrorists, and guerilla fighters.  Thus, 

the population is often a faceless mass while the individual MOOTW troops are few and 

very obvious. (Allen, 1995) 

The success of MOOTW, as measured by the media, the public, and observers 

abroad, depends ultimately on individual Soldiers and Marines making the appropriate 

decisions when confronted with a violent encounter.  Arguably, the biggest challenge is 

developing the appropriate tactics, techniques, and procedures (TTP) in combination with 

the right equipment that enable the success of troops at the point of potential conflict.    

The services in recent years have begun to focus much of their research and 

development on MOOTW small unit encounters and combat.  Much attention throughout 

the Department of Defense has focused on the development and testing of better non-

lethal weapons and associated equipment.  The Marine Corps has conducted several 

Warfighting Experiments to test both tactics and equipment in realistic environments. 

These Warfighting Experiments and other such field tests, while immensely valuable, are 

also expensive, difficult to conduct, and require months of intense planning and 

coordination.  The Marine Corps, as well as other Armed Forces, could benefit from the 

ability to simulate small-scale MOOTW encounters and use these simulations to 

supplement their ongoing development efforts.  

C. OBJECTIVES AND RESEARCH QUESTIONS 

This thesis examines a particular aspect of MOOTW conflict:  riot control.  It 

seeks to model a generalized scenario abstracted from a specific civil disorder episode in 

Guantanamo Bay, Cuba, in 1994.  The desire is to be able to generate a model that will 

support the exploration of tactical concepts for riot control.  We will argue that 

simulation is the best approach with which to start, as it seems to be modeling method 

that will most likely aid in the examination of different tactics and crowd dynamics.  It is 
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possible that insights gained from the simulation may open the door to other modeling 

methods.   

Mission Area Analysis, Requirements Generation, Concept Development, and 

Doctrine Development are all processes that fall under the general term of Combat 

Development and fulfill various roles in the overall effort of preparing the force for future 

threats or how to better face today’s threats.  Each of these processes could benefit from 

the ability to simulate and test MOOTW scenarios, whether it be to validate concepts, 

examine new requirements, model future threat, or develop doctrine.  The U. S. Marine 

Corps conducts combat development at the Marine Corps Combat Development Center 

(MCCDC) using methods such as computer-based simulation, wargaming, and field-

testing.  As mentioned above, the Marine Corps’ Warfighting Lab conducts extensive 

field tests of concepts and equipment, much of it oriented towards MOOTW.  While 

MOOTW has been an area of focus for the Marine Corps’ combat development effort for 

much of the past decade, MCCDC has little in the way of computer simulations that 

specifically address MOOTW combat.  Most of the research with computer simulations 

has been done using large-scale warfare aggregate models to examine campaign level 

issues such as force deployment, employment, and logistics.   

Two questions arise:  what should be required of simulations of security 

operations in MOOTW; and are there current warfare models that can be adapted to this 

use.  Warfare simulations come in two primary varieties: large-scale and small-scale.  

Large-scale models such as the U.S. Army’s Concept Evaluation Model (CEM), used 

during Desert Storm, aggregate combat (Appleget, 1995).  They provide a deterministic 

prediction of the expected results at a campaign scale.  Small-scale models of combat 

such as JANUS, another U.S. Army simulation system, attempt to model warfare 

discretely at the entity or small unit level (typically tank or infantry squad) and model 

battles at the company and battalion level.  Clearly, a small-scale model is needed to 

model security operations because of the impact of individuals on the outcome.   

The problem with simulating MOOTW is that the individual participants are not 

strictly combatants.  Entities have choices.  For example, in the mid-1990’s Cuban 

refugees were being housed in refugee camps at the U.S. Naval Base at Guantanamo, 

Cuba.  These refugees became unruly over their conditions of the camp and rioted 
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demanding to leave.  These refugees consisted of various groups:  men, women, children, 

the elderly, the ill, the disinterested, the criminally minded.  The crowd had leaders, 

agitators, fighters, supporters, and bystanders.  The dynamics of the situation were highly 

charged with violent confrontations developing very quickly.  The tactics of the security 

forces and the crowd changed day to day as they each adapted to the other’s previous 

actions.  The factors that went into whether the crowd rioted, merely protested, or failed 

to form at all were varied and complex (Allen, 1995).  The choices these entities make 

are a function of their internal state.  This state can vary widely from one situation to the 

next.  The issue of the internal state of simulation entities is one that most current combat 

models, simulation or otherwise, fail to capture. 

Allen’s (1995) article indicates that crowd dynamics can be viewed as a non-

linear combination of the individual decisions of a heterogeneous mass of people.  For 

example, one tactic employed by the security forces was the use of snatch teams against 

crowd agitators.  A heavily armed team entered the crowd suddenly and snatched an 

agitator before the crowd turned.  The agitators, as it turned out, had a synergistic effect 

on the other crowd members and their removal defused the situation.  Thus, the effects of 

individual decisions can have a non-linear affect on the system as a whole.  

Ultimately, the problem with current small-scale combat simulations is that they 

are purely combat-oriented.  Entities are partitioned into one of two opposing sides and 

then allowed to fight in accord with a hard-coded set of rules that represent doctrine, 

tactics, and capabilities.  For MOOTW, the simulation tool should allow for more than 

two sides, allow the rules governing individual entities to be changed, and give the 

individual entities the ability to choose their action:  to fight, to flee, to abstain, to 

threaten, etc. 

Agent-based simulations may provide an answer.  They provide the entity-level 

representation that seems best suited to the MOOTW problem.  They also possess some 

level of autonomy that is needed to model the issue of choice.  As simulations, they grant 

the level of flexibility necessary to examine different tactical concepts. 
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D. SOFTWARE AGENTS 

The study of software agents is relatively recent and includes concepts such as 

intelligent agents, multi-agent systems, bottom-up simulation, robotics, artificial life, and 

distributed artificial intelligence.  Agents have a broad array of uses beyond simulation, 

from “intelligent” server software to feed back control.  This variety of uses has led to a 

vagueness surrounding the term agent, its function, and its characteristics.  The published 

authoritative sources in the field often disagree with one another.   

This thesis relies on two primary sources:  Holland (1995) and Ferber (1999).  

Ferber’s work provides a more comprehensive approach to software agents and the 

computer science issues involved.  Holland is more interested in modeling complex 

adaptive systems (CAS) and sees software agents as the logical tool for their study.   

Ferber describes two broad research objectives in this field of study: the study of 

the self-organizing systems when several autonomous entities interact (what Holland 

would call a CAS), and the exploitation of this mechanism to create distributed artifacts 

that can accomplish complex tasks through cooperation and interaction.  The latter 

approach is concerned with a new approach to artificial intelligence.  The first approach 

is what concerns this thesis.    

Axelrod (1997) describes agent-based modeling as a third way of doing science in 

contrast to induction and deduction.  Induction can be described as the discovery of 

patterns in empirical data.  Deduction consists of specifying a set of axioms and then 

proving the consequences of these assumptions.   Agent-based modeling, like deduction, 

starts with a set of explicit assumptions – the rules of the simulation world.  Instead of 

deriving a proof from these deductions, the agent-based simulation generates data that 

can be analyzed inductively.  In contrast to pure induction, where the data come from the 

real world, the simulated data come from a rigorously specified set of rules of the 

modeler’s creation.  Axelrod concludes, “ Whereas the purpose of induction is to find 

patterns in data and that of deduction is to find consequences of assumptions, the purpose 

of agent-based modeling is to aid intuition.” (Axelrod, 1997, pg. 4)  This implies that our 

expectation from agent-based modeling should not be to obtain predictions about a 

complex system’s future state but rather to gain insight into the system. 
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As alluded to earlier, finding a concise definition of the term agent as used in 

computer science is much like the search for a rigorous definition of intelligence:  no 

consensus exits.  Holland avoids a definition, but goes on to describe agents as the 

models used to represent individual decision making entities that interact in the physical 

world, be they people or organizations.  Ferber attempts to find a minimal common 

definition with the following: 

 

An agent is a physical or virtual entity which: 

a) is capable of acting in an environment, 

b) can communicate directly with other agents, 

c) is driven by a set of tendencies (in the form of individual objectives or a 

satisfaction/survival function which it tries to optimize), 

d) possesses resources of its own, 

e) is capable of perceiving its environment (but to a limited extent), 

f) has only a partial representation of its environment (and perhaps none at all), 

g) which possesses skills and can offer services, 

h) which may be able to reproduce itself, 

i) whose behavior tends towards satisfying its objectives, taking account of the resources 

and skills available to it and depending on its perception, its representations and the 

communications it receives. (Ferber, 1999, pg. 9) 
 

He does concede that extreme examples exist that do not strictly meet some of 

these categories.  Purely communicating agents have no real environment to perceive.  

Their “environment” may be the server on which they monitor messages from other 

nodes on a network.  Tropistic agents have no internal reasoning ability and are driven 

purely by their environment.  They can be likened to an ecoli bacterium swimming up a 

sucrose gradient.  These two kinds of agents represent extremes and each fall into what 

Ferber describes as the two schools of thought on multi-agents systems.  The ‘cognitive’ 

school espouses systems of small numbers of ‘intelligent’ agents.  The agents possess 

large knowledge bases and communication skills.  They interact, cooperate, and resolve 

conflict among themselves to develop solutions to complex issues.  These kinds of agents 

are used more often in the study of the sociology of organizations and of small groups.  
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Cognitive agents are described as possessing a symbolic representation of the world from 

which they can reason.  For the purposes of computer modeling, the user would have to 

use specialized computer languages that support the required symbolic knowledge 

representation, such as Prolog (Andrade, 2000).      

The ‘reactive’ school does not believe that agents themselves must be intelligent 

for the system itself to demonstrate intelligent behavior overall.  Reactive agents reason 

at a sub-symbolic level and can be modeled on a computer with more general-purpose 

languages.  They are simple by design and easier to model.  This facilitates simulating 

large numbers of agents, a vital capability to effectively simulate complex, multi-entity 

systems.  Holland (1998) provides an example of an agent-based simulation of an anthill 

that showed how the interactions of simple entities can lead to complex behavior.  

Holland claims these kinds of multi-agent systems can be used to model complex 

adaptive systems; that is, aggregations of many individual entities whose simple 

individual interactions yield complex behavior.  Holland’s focus is to devise a way to 

study in a computer-generated laboratory the concepts of emergence, complexity and 

adaptivity. 

Adaptation is another term that is frequently used in the literature, but whose 

meaning is sometimes vague.  For the purposes of this thesis, let us view two levels of 

adaptation.  The first is the adaptation of the system to change.  An aggregation of 

reactive agents will adapt to new inputs from its environment, but internally the 

individual entities in the system remain unchanged.  Taking Holland’s example of the 

anthill, we can envision the anthill when it is disturbed by a passerby’s shoe.  The ants 

appear chaotic but order rapidly emerges as the ants settle back into a variety of tasks, 

from rebuilding the nest to gathering food.  It all appears very ordered but it is known that 

there is no central executive.  The appearance of order appears from the ants interacting 

and following their simple rules of behavior.    

A higher order version of adaptation is internal change.  Learning and biological 

evolution are examples of this kind of adaptation.  Learning, for a reactive agent, can be 

interpreted as the generation of better-adapted rule sets.  Biological evolution can be 

viewed as adaptation of the gene pool to the environment.   This kind of agent adaptation 

could be generated via computational evolution, as described separately by Holland 
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(1994) and Fogel (2000).  This method would seek to employ evolutionary computational 

methods, to include genetic algorithms, to generate “more fit” agents by evolving new 

rule sets.  Essentially, the problem has changed from modeling a set of internally 

immutable agents to one where the agents are allowed to evolve in an attempt to optimize 

some internal objective function.  Examples include the probability of reproduction for a 

biological agent, or the probability of survival for a virtual soldier.  A method that offers 

the possibility of being able to evolve new rules (example:  better tactics), is 

tremendously attractive but offers daunting challenges.  A more feasible method to 

evolve new rules would be to use the insight gained from iterations of the model to 

evolve better the rules. 

It is clear, then, that for the purposes of this thesis, the reactive agent type is most 

suitable for modeling individuals in small-scale MOOTW scenarios.  Since there are no 

simple off-the-shelf implementations of agents suitable for this kind of simulation, the 

author needed to find a suitable model for implementation.  Holland’s agent (1994), to be 

discussed in the following chapter, was chosen because of his clear and detailed 

description of its structure and function.  

E. AGENTS IN WARFARE SIMULATION 

In recent years, agent-based simulation has been applied to the study of warfare.  

Ilyanchinski (1997) created a software simulation called Irreducible Semi-Autonomous 

Agent Combat (ISAAC), using agents to model warfare as a complex adaptive system.  

Emergence, complexity, and complex adaptive systems (CAS) are all topics of study 

under the relatively new field called the New Sciences.  Researchers in these fields seek 

scientific principles believed to rule the behavior of complex systems and their ability to 

adapt to change; e.g., economies, ecologies, immune systems.  Ilyachinski (1996) has 

argued that warfare can possibly be viewed as a CAS given that war is made up of agents 

interacting at numerous levels and, despite the chaos, order can be seen. 

There is another important argument for exploring the use of agent models as a 

warfare-modeling tool.  Most warfare models have at least one of two shortfalls:  the 

assumptions of rational decision making and determinism.  Analytical models depend 

heavily on the premise of rational decision making - that role players in an analytical 
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problem all have complete knowledge and will always make the optimum choice.  These 

assumptions are often vital to making the problem analytically tractable.  But humans 

often make less than completely rational decisions and they almost never have complete 

knowledge.  This is reflected in what Clausewitz (1940) called the fog of war. 

Many warfare simulations aggregate combat using attrition rates.  The results 

generated under these simulations are essentially the long-term average results of that 

specific encounter – the expected results.  The history of warfare, though, is rife with 

examples of battles that had very unexpected endings.   

The results of battle are too often to be found on the tails of the distribution rather 

at the mode.  Warfare commanders should be very concerned about the ‘tails’ since it is 

there that one finds the catastrophic failures, such as the Japanese attack on Midway, and 

the great victories, like Napoleon’s Jenna, where his supporting attack destroyed the 

Austrian main body.  A warfare model that provides combat leaders with some 

understanding of the processes that drive battlefield results out to the tails would be of 

obvious value.  Agent-based simulations offer the promise to attend to some of these 

deficiencies and deserve to be explored as a method for modeling warfare, of which 

MOOTW is a special case. 

Another problem with attrition rates is that they fail to capture the mechanism by 

which casualties occur.  The goal of any tactic in MOOTW should be, while meeting the 

constraint of accomplishing the mission, to minimize casualties.  This should allow for 

casualties to be zero.   

Any model that includes the use of attrition rates - Lanchester models, for 

example - defeat this purpose, since they assume a priori that casualties will be non-zero.  

In the “CNN era” casualties can have a profoundly negative effect on the overall success 

of a MOOTW campaign.  Models of MOOTW combat should be able to represent the 

method by which casualties are generated.  The understanding of this process could lead 

to the development of methods that interrupt or degrade it. 

F. SCOPE OF THE THESIS AND METHODOLOGY  

The methodology used in this thesis represents a first attempt at combining agent-

based modeling with discrete-event simulation to address a MOOTW problem.  Through 



 12 

modeling a crowd control scenario, this thesis seeks to develop a simulation methodology 

that will assist researchers to better understand the MOOTW combat processes. 

While this thesis will ultimately simulate a specific crowd control problem and 

delve into the question of tactics development, there is much ground to cover on the 

method of modeling.  In this new field the experts are few, they do not all agree, and all 

of the specific implementation methods are closely held intellectual property.  So in a 

sense, this thesis is covering new ground.  Thus, before addressing the specific problem 

to be modeled, this thesis must develop the modeling methodology.  In doing so, more 

general application of the methodology must be considered, both from a theoretical and 

implementation perspective.  This theoretical aspect is addressed by Holland’s agent 

model.   

Chapter II of this thesis will address the MOOTW focused implementation of 

Holland’s model called AgentKit.  Chapter III addresses the problem to be simulated, the 

operational questions the scenario raises, and the methods used to generate the 

simulation.  In Chapter IV, the results of the simulation are analyzed and discussed.  

Chapter V contains the conclusion and recommendations. 
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II. AGENTKIT 

 

AgentKit is a software implementation based on Holland’s (1984) description of a 

reactive agent with focus on MOOTW simulation.  Before describing this implementation 

we need first to understand the functioning of Holland’s agent model.  AgentKit’s 

structure and its most important classes are discussed.  The chapter concludes with a 

description of the process of generating an agent-based simulation with a tool like 

AgentKit. 

A. HOLLAND’S AGENT MODEL 

Holland (1994) provides an extensive description of his structure for a rule based 

adaptive agent.  While the agent model employed in this thesis is founded on this 

theoretical model, actual implementation led to some deviation from the original design.  

The differences lie in the ultimate purpose of the agent models.   

Holland’s agent was designed to develop computer models of complex adaptive 

systems.  Holland’s goal was to allow for the agents to be able to evolve new rules via 

genetic algorithms.  The agent we seek is a reactive agent suitable for modeling a 

participant in a MOOTW small-scale encounter.  For a better understanding of the agent 

design used in this thesis, a brief description of the applicable portions of Holland’s 

model is provided here. 

Holland’s agent contains four components:  a set of detectors, a set of effectors, a 

set of stimulus-response rules, and a performance system.  The agent perceives its 

environment through its detectors.  An event in the environment causes the detectors to 

generate a message that are routed to all the rules.  The rules in turn may or may not 

generate a message.  The rule generated messages constitute instructions to the effectors 

to take a specific action in response to the event in the environment.   

Holland provides the example of a frog agent.  A fly approaches the frog.  Its 

detectors (the eyes) discriminate that a small, flying thing is approaching.  This message 
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is delivered to all of its rules for action.  The only rule that provides a message is the rule 

that tells the tongue effector to stick out. 

Holland’s simple example aside, there is usually more than one rule competing 

for each of the effectors.  The performance system is needed here to filter these messages, 

choosing the messages from the “fittest” rules to send to the effectors.  Fitness is 

determined by the relative success of the rules in past decisions.   

The stimulus response rules are simple IF-THEN statements.  Holland stipulates a 

specific syntax for the rules such that the syntax is common to all agents, allows for all 

interactions between any of the agents, and allows for adaptive modification.  In order to 

illustrate this syntax he proposes that the agent operate on bits throughout.  The detectors 

discriminate only one aspect of the environment and generate a bit string of responses 

corresponding in length to the number of detectors.  The number of unique messages 

possible for n detectors would then be 2n.  A rule fires its own bit string of instructions 

only on receiving an acceptable bit string.   

To allow for non-unique bit strings he lets rules to be indifferent to the bits at 

certain positions in the string, illustrating this via the pound symbol (#).  This allows 

some rules to be specific to the point of uniqueness, while others to be nearly universal.  

If the acceptable input of the rule is (1010101), the rule’s allowable input is specific to 

the point of uniqueness.  A rule with the acceptable input (1######) will accept any 

message that starts with a 1, including the previous rules message, for a total of 64 

messages - half of all possible messages for this syntax.  Assuming a variety of messages, 

this general rule will generate response quite frequently while the previous rule will 

rarely provide a non-null response.  

Given that many rules may fire instructions to the same effector, Holland gives 

the Performance System the ability to discriminate between rules via two hierarchies:  

rule specificity and rule fitness.  Assuming a varied environment, general rules will tend 

to fire a response more often than specific rules.  General rules are valuable because of 

their flexibility.  They can provide a response to a broader array of scenarios.   

Specific rules deal with fewer scenarios but are more attuned to the few events 

that trigger them.  The responses of specific rules are considered of greater value to the 

agent and are granted priority over the responses of more general rules.   
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The figure below illustrates the process.  An event triggers the detectors.  The 

detectors send a message that is routed to all the rules.  The Performance System chooses 

the non-null response from the most specific rule to send to the effector.  The effector 

accomplishes an action on the environment.  The results of this action may constitute 

another event in the environment that starts the cycle over again.  Feedback from the 

results leads to credit assignment.  It should be noted that this agent has only one effector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  A graphic of Holland’s agent and how it interacts with its environment.  Note 
how all the rules respond to the incoming message and have responses.  Rule B is the 
most specific so its response is chosen for the effector.  Implied in the feedback loop is 
that the detectors have to detect the action in order to invoke credit assignment. 

 

For responses from rules within the same level of specificity, the Performance 

System discriminates between rules by their relative fitness.  The idea is to identify the 

rules that generate the most success for the agent.  Holland ascribes to the rules a 

numerical weight that reflects their relative fitness.  The rule whose response is chosen 

(highest specificity and then highest weight), is designated the active rule.  The 

Environment 

Event 

Detectors Rules
es 

A.If 10##1 
then 00100 

B. If 10001 
then 10110 

C. If  #00## 
then 11110 

Performance 
System 

Effector 

Agent 

Action 

Feedback leads to credit 

Sends 
Msg 
10001 
 

Effector 
Msg 
10110 
 



 16 

Performance System, using a credit assignment scheme, measures the level of success of 

the use of this rule and increments - or decrements - the rule’s weight accordingly.  The 

more successful the rule, the more it gets used.  

The total set of rules can be broken down into subsets that each map to a specific 

effector.  Within these subsets, rules compete by specificity and fitness for the attention 

of their effector.  This allows the processing of events from the horizon in parallel.  An 

event triggers the detectors.  The detectors’ message gets to all the rules.  Within each 

subset, the rules compete for the effector.  The performance system screens these and 

sends the best message on to each of the effectors. 

One of the strengths of this model is this inherent parallelism.  A single perceived 

event can result in various rules being invoked that compete in parallel for the chance to 

deliver messages to their specific effectors. This constitutes a form of parallel decision 

making.  Thus, an agent model of a soldier that started receiving enemy fire could make 

the decision to return fire, call out a warning, and run for cover, all without having a 

single rule that specified this response.  In contrast, a traditional Artificial Intelligence 

(AI) method would search the available database given the current states and select the 

matching rule.   

Parallelism allows a building block approach to rule building (Holland, 1994).  

One way to look at this approach would be to envision the rules whose responses arrive at 

the effectors as being a one meta-rule output, composed of the parallel rules’ outputs 

strung together.  Then, a rule set of m rules per each of n effectors (a total of m*n rules) 

could minimally describe an mn meta-rule set.  In actuality, the number in this set is 

probably higher when one considers that some rules are general and handle more than 

one situation.   

Figure 2 provides an illustration of this process.  The picture shows three effectors 

and their respective rule sets.  Some event in the agent’s environment has led the 

performance system to deliver a rule response to each effector.  If we were to consider a 

sequential treatment of this process, we would need one rule to represent each 

combination of three effector rules.  Thus, the 12 rules pictured deliver as many possible 

responses as a sequential system of 81 rules. 
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Figure 2.  Comparing the Parallel Process effect of using rules in building block 
fashion versus using serial processing rules. 

 

 

Parallelism, rule competition, and the building block approach allow Holland’s 

agent to model agent adaptivity.  Credit assignment creates a competitive landscape for 

rules within the agent.  It is a first order analogy of individual learning: creating models, 

testing them, discarding those that work, and retaining the successful.  The challenge lies 

in deciding the details of what events equate to success or failure and the weights 

assigned for these event - what Holland calls the credit assignment scheme.    

The final step in Holland’s scheme for agent adaptation is Rule Discovery.  This 

involves evolving new rules from experiences gained by the agent.  Here Holland applies 

genetic algorithms.  The rules can be thought of individual functions whose mapped 

value on the fitness landscape is their weight.  The rules are defined by the bit-streams 

that form the input/output.  Holland uses these bit streams as the genetic code on which 

he applies crossover and mutation to generate new rules. 

The reader may have noticed by now that nowhere in the description of Holland’s 

agent does the term “goal” arise.  This seems in direct contradiction to Ferber’s 
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description of an agent, though in all other aspects, Holland’s agent fits the bill of what 

Ferber calls a reactive agent.  Looking deeper, one can note that Holland’s agent is driven 

by implicit, internal goals that lie within its credit assignment scheme - the agent’s 

method for ranking its internal models.  For instance, an agent model of an animal has as 

its goals to survive and reproduce.  In Holland’s agent there is no explicit rule or method 

that says  “I must survive” or “I must reproduce”.  It is implied, since the credit 

assignment scheme rewards the rules that allow it to eat, survive threats, compete, and 

reproduce. 

B. IMPLEMENTATION CHOICES 

The first step in implementation was choosing a programming language.  Given 

that Holland’s agents were essentially constructs of component objects, an object-

oriented language was preferred.  It was desired that the implementation be platform-

independent so simulation models using this implementation could be run on nearly every 

machine and operating system.  Java is the language that meets all these criteria.  

Additionally, Java is the language used to write Simkit  (Stork, 1996), the discrete event 

step (DES) simulation library employed as the foundation for AgentKit.  

The DES part of simulation was provided by Simkit:  event list, simulation clock, 

random variable generation, data collection, and generic simulation entities.  Simkit also 

contains some more specific classes of objects such as Mover, Sensor, Mediator, and 

Referee, that allow for the simple modeling of physical scenarios.  With little work, the 

user can create new objects with the desired functionality by extending the abstract 

SimEntityBase class in the library, or by extending the more specific objects mentioned 

above.   

Thus, by using Simkit as the simulation environment for Agentkit, the task of 

implementation of Holland’s agent was one of extending Simkit objects and granting 

them the necessary attributes.  The majority of the objects used to form AgentKit agents 

are extensions of Simkit objects.    
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C. AGENTKIT STRUCTURE 

A useful and effective implementation for agent-based simulation of MOOTW 

demanded a general purpose, component approach.  This served two purposes.  First, 

following this approach allowed for the design implementation to progress in phases.  

Trying to implement Holland’s concepts required breaking the concepts into layers of 

complexity.  Trying to “eat the elephant in one bite” would result in a hard-coded, 

inflexible design that would be fragile and difficult to modify as well as opaque to 

follow-on researchers.  Thus, the design progressed from the very general to the very 

specific.  Second, no design is ever perfect and a robust component framework allows for 

easy modification and improvement, both during the progress of this thesis, and in the 

event of follow-on work. 

AgentKit consists of two parts: the Foundation library and the MOOTW library.  

The Foundation library consists of mostly interfaces and classes generic to AgentKit.  

The MOOTW library contains classes designed for MOOTW simulation. 

D. FOUNDATION LIBRARY 

An agent in AgentKit is assembled from various objects.  The kernel of the agent 

is composed of objects derived straight from Holland’s agent:  a set of effectors, a set of 

detectors, a set of rules, and a performance system that manages the interactions. 

The detectors perceive the environment and generate messages about their 

perceptions.  These messages are delivered to the rule set.  The messages may or may not 

trigger individual rules.  Rules that govern specific effectors compete in some sense to 

deliver their messages to the effector.  The effector receives a message and executes an 

action.  The performance system oversees the messaging and adjudicates which rules get 

to send messages to the effectors by choosing the non-null response from the rule of 

highest specificity.    

In AgentKit, the roles described above are filled by software objects from the 

following interfaces and classes. 
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INTERFACES  DESCRIPTION 

Effector   Object that acts on agent’s environment 

Detector    Object that senses in agent’s environment 

Rule    Provides an output message to appropriate input 

MessageGenerator  Used by Detector for sending messages 

CreditHandler   Assigns credit to Chromosomes 

 

CLASSES 

PerformanceSystem  Object that fulfills role of a performance system 

Gene    Bundle of rules governing a specific Effector 

Chromosome   Bundle of genes that map to the Effector set 

MessageEvent   Message and Originator data bundle 

Message   Wrapper for an Object array 

 

The PerformanceSystem can be viewed as the neurological system of the agent.  It 

routes messages from the detectors to the rule set.  It polls the rules for their responses 

and then selects responses to forward to the effectors.  An instance of this class maintains 

references to three variable sets:  a hashtable of effector objects, another of Detectors and 

an array of Chromosomes.  The hashtables are keyed by the name of the function the 

effector or detector fulfills.  For example, to get the reference to the agent’s shooter, 

query the effector hashtable with the key “shooter”.  This allows the Performance System 

to remain independent of the specific class used for a specific function. 

A significant difference between this agent and Holland’s is that the rules have no 

individual weight.  Instead, the agents are allowed to have separate states.  Each state will 

have a different rule-set, the chromosome.  It is the chromosomes that are weighted.  The 

state of the agent is a function of the active chromosome - the chromosome with the 

highest weight.  Credit assignment, instead of giving rewards to rules, is dealt to the 

chromosome via a scheme of the user’s choice.     

Assigning credit to the active chromosome vice individual rules (representing 

gene alleles in the genetic analog) is more in keeping with Fogel’s arguments (2000).  

Research in genetics indicates that the individual effect of a single gene is very difficult 
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to isolate (Fogel, 2000).  A specific gene on one chromosome may produce entirely 

different traits in the phenotype than the same gene on another chromosome.  Thus, the 

active chromosome is rewarded or punished based on the user’s credit assignment 

scheme.   

In terms of structure, a chromosome is an array of Genes.  A chromosome maps 

each gene to an effector in the effector hashtable.  When the Performance System queries 

the Gene with a message, it is understood that the responses it is gathering are competing 

for the attention of a single effector.  A Gene object is an array of Rule objects sorted in 

descending order by the rule specificity.  If a rule in a gene has no response to a query it 

returns null and is ignored by the performance system.  The performance system accepts 

the first non-null response (since the more specific rule has priority) and feeds this to the 

appropriate Effector.   

In AgentKit, the agent can be modeled as simply reactive by giving it only one 

chromosome in its chromosome array.  Alternatively, adaptivity is modeled simply by 

providing the agent with many chromosomes.  The active chromosome is determined via 

a credit assignment scheme of the user’s design. 

The performance system will always provide every chromosome with incoming 

messages.  However, it will only forward responses from the active chromosome to the 

effectors.  This allows for the use of rules that maintain state, should the user desire.  

 Take the case of an agent modeling a combatant with two states:  hostile and 

passive.  When the agent is in its passive mode, it has a rule for fleeing that is invoked by 

taking enemy fire.  Suppose it is in the aggressive mode taking fire when something 

triggers it to shift to the passive mode.  It makes no sense for the agent’s flee rule to be 

unaware of the fact that the agent has recently taken fire.   

A simple way to address this is to allow the flee-rule to be aware of the agent’s 

situation by tracking all incoming messages.  Thus, while the agent is in the aggressive 

mode taking fire, the flee rule will be sending flee messages the entire time, but these 

messages will be ignored until such a time as the agent enters its passive state. 

The effector and detector interfaces allow the user to use previously designed 

objects and extend them, while implementing the necessary interface for use in AgentKit.  

For instance, the Simkit library class BasicMover was extended as 
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BasicCombatAgentMover implementing the interface Effector.  Thus, a Mover type 

object could also be treated as an Effector. 

The Detector sends messages via the MessageGenerator.  Having a separate 

object for message generation keeps the method of detection orthogonal to the messaging 

method. 

Rule objects also handle messages but rather than generating messages that are 

sent to the performance system, their messages are handed directly to the performance 

system in response to the messages provided. 

E. MOOTW LIBRARY 

The MOOTW library contains over 40 classes, so the discussion here will focus 

on the eleven most important ones.  All of AgentKit’s classes are listed in the Appendix. 

 

 

 

CLASSES   DESCRIPTION 

BasicCombatAgent  Wrapper for all the objects that make an agent 

BasicCombatAgentMover Movement component for a CombatAgent 

BasicShooter   Object that has weapons and fires them 

BasicVisualSensor  Cookie cutter sensor 

AgentReferee   Tracks all movers and oversees interactions 

CombatAgentMediator Mediates interactions between two movers 

FireArm   A simple firearm - needs its parameters set by user 

MoverRule   Abstract rule for movers 

ShooterRule   Abstract rule for shooters 

ModularMoverManager Manages the moving process as per the active rule 

ModularWeaponManager Manages the shooter process as per the active rule 

 

The BasicCombatAgent serves as repository for all the components of the agent:  

chromosomes, effectors, detectors, and the performance system. The 

BasicCombatAgentMover allows the agent to move in its environment.  The 
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BasicVisualSensor are its eyes.  BasicShooter is an effector that carries out the agent’s 

shooting functions.  FireArm requires the user to input its parameters:  ammunition 

capacity, maximum range, rate of fire, and standard deviation in meters per meter range.   

Interactions between separate entities in AgentKit, as in Simkit, are handled by a 

third party.  First, the AgentReferee tracks all the entities.  When it determines by their 

trajectories that there will be an interaction between two entities, it assigns a 

CombatAgentMediator to handle the specific interaction.  The CombatAgentMediator, an 

extension of Simkit’s Mediator class, handles detection by informing the sensor when it 

has detected the mover, contingent upon the sensors detection algorithm.   

The CombatAgentMediator also handles other interactions:  enemy and friendly 

weapon firing, near misses, target kills, etc.  For example, when the BasicShooter 

discharges his weapon, the CombatAgentMediator listens to this event and uses the 

Rayleigh distribution (with the standard deviation from the weapon scaled by the range to 

the target) to calculate probability of hit.  This mediator then informs the target that he 

was either hit or had a near miss.  Figure 3 provides a caricature of the process.  The 

CombatAgentMediator detects Tank A firing, calculates the probability of hit, generates a 

uniform random sample, and determines that Tank B was hit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The CombatAgentMediator’s role.  
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The default damage function is simply the number of hits.  The 

BasicCombatAgentMover can a take an arbitrary number of hits (set by the user) until 

dead.  He suffers no degradation in capability until dead.  The user, however, may specify 

a more elaborate scheme for a damage function. 

MoverRule and ShooterRule are abstract classes.  They do not provide any kind 

of movement algorithm but do contain all the variables and methods one would need for 

rule “housekeeping”.  To implement a desired movement algorithm, the user extends the 

applicable abstract class and encodes the desired movement or firing algorithm. 

In Holland’s model the rules are one-dimensional.  They make a decision, firing a 

response to an input implemented by the effector.  However, in discrete event scenarios 

things get more complicated.  Events can arrive very quickly and if every event triggers a 

decision, the agent may be stuck in a repeated cycle of event-message-decision, 

ultimately do nothing.  Conversely, some rules may require multi-step tasks; they may be 

algorithmic rather than simple IF-THEN statements.  A rule to pursue a fleeing and 

evading foe is arguably a non-linear search problem.  In AgentKit, a MoverRulePursue 

class handles this by linear steps each a fixed proportion of the distance to the target.  By 

allowing the rule to terminate within a fixed distance of the target, we are assured of 

finite convergence of the algorithm.  As the reader may note, this requires some method 

of communication between the rule and effector, something Holland’s model does not 

allow.   

AgentKit designates a third party called a modular manager to go between the 

effector and the rule.  The modular manager keeps track of the active rule and informs it 

when the effector has completed a process step and is awaiting instructions.  The rule 

returns a new instruction and awaits the next request.  This cycle continues until 

supplanted by a new active rule.  This interaction between the modular manager and the 

rules permits the use of algorithmic rules.  This idea of allowing algorithmic rules is one 

of the more significant differences between AgentKit and Holland’s model. 

So far, we have discussed the components of agents in AgentKit.  At this point it 

is important to discuss the process of creating agent models with AgentKit. 
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E. THE AGENT MODELING PROCESS IN AGENTKIT 

As described previously, Axelrod (1998) describes the process of research with 

agent-based simulation as being a combination of inductive and deductive learning.  The 

agent-based modeler uses deductive logic to create the agent model and the rules that 

govern them and from his simulation he or she gains inductive insight.   

AgentKit’s function is to facilitate the deductive portion of modeling the agent.  

AgentKit provides the components while the modeler fits them together to make the 

individual entity that suits his or her modeling needs.  The agent modeling process used 

in this thesis consisted of the following: 

 

- Choose detectors that describe how the agent gathers information from the 

environment. 

- Choose effectors that model how the agent affects its environment. 

- Devise a simplifying rule set that adequately describes the agent’s real world 

behavior.  Start with simple general rules and incrementally introduce specific 

rules. 

- Devise a message format so that all messaging can be understood.  The sender 

does not always know nor care who the receiver is.  For example, detectors 

send detection messages for all the rules to read. 

- Describe the set of events that interact with these rules.  This plays a key role 

in what the detectors should be able to “see” and what the Mediator mediates. 

- Consider the need for individual adaptation (evolution), because it may not be 

vital to the model. 

- Add rule and/or functionality incrementally, interspersed with extensive 

testing to determine if the individual behavior of the agent is satisfactory. 

- Test/adjust the agent to see if its individual behavior adequately captures the 

desired aspect of the entity being modeled.   

 

For MOOTW, although the entities being modeled by agents are people, the roles 

they play help narrow the number and types of behaviors that will have to be captured.   
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Detectors can be simplified to just the eyes.  Effectors may be only a movement 

component and a firing component.   

A richer model could include a communication component, an ability to take 

possession of and handoff objects, or a role-playing component, such as leadership.  The 

user needs to exercise care in choosing the number of features to add to the agent.  The 

model should be built up incrementally in order to minimize the features of the model to 

avoid unnecessary complexity. 

Rules are needed to govern these effectors.  For example, rules for movement 

need to reflect different situations:  following a leader, moving to a desired position, 

fleeing a foe.  Again, while it may be attractive to build a rich and diverse rule hierarchy 

to capture every possible behavior, the modeler must employ caution in choosing these 

rules.  The rules are driven by the events that the modeler wishes to incorporate in the 

model.  By deciding on which events are important to the MOOTW scenario and 

discarding the rest, the modeler will also constrain the types of rules he or she may 

employ.  For example, initial detection of other entities is a mandatory event but will the 

model include detection of rioters throwing rocks, or a fellow peacekeeper being hit?  If 

the model includes detection of rioters throwing rocks, then rules dictating reactions to 

this event can be used.   

With this understanding of the process that generates an agent-based simulation, 

we may proceed to the following chapter where we discuss the riot control scenario 

addressed in this thesis and the simulation model. 
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III. THE RIOT SIMULATION MODEL 

 

This chapter presents a riot control problem faced by U.S. Soldiers and Marines in 

the Cuban migrant camps at Guantanamo Bay, Cuba, in 1994.  A simplified scenario is 

constructed that generalizes the riot control problem.  The scenario is then simulated 

using AgentKit.   

A. THE RIOT SCENARIO 

During 1994, a large number of Cubans attempted to immigrate to the U.S. 

illegally.  Many were undesirable members of Cuban society.  Several thousand were 

detained and kept in large immigrant camps at the U.S. Naval Base, Guantanamo Bay, 

Cuba. There, in August and September 1994, the Cuban migrants rioted violently.  The 

security forces at the base consisted of a Marine infantry battalion and a U.S. Army 

Military Police force.  It took the security forces five days of sustained civil disorder 

operations to stabilize and quiet the migrant camps.  LtCol. John R. Allen wrote a Marine 

Corps Gazette article about the part played by 2nd Battalion, 6th Marines, which he 

commanded, during this operation and the lessons learned.  This article provided the 

inspiration for this thesis. (Allen, 1995) 

LtCol. Allen describes the initial encounter with the raw violence of a rioting 

crowd as being very disconcerting to the Marines and soldiers involved.  Leaders were 

taken aback at the newness and unexpectedness of the behavior presented.  Neither their 

training nor their doctrine had prepared them for the initial encounter.  They had to adapt 

their skills to the situation at hand and develop new tactics to counter the advances made 

by the crowd, in effect inventing new tactics on the spot.  The collective body of 

knowledge regarding MOOTW combat has advanced because of their experiences and 

those of other units in similar situations.  However, exploration of future MOOTW 

encounters is necessary.  Field tests, like those conducted by the Marine Corps 

Warfighting Laboratory are useful.   

This scenario could be viewed as a template for MOOTW violent encounters.  

Developing an agent-based simulation of this scenario could provide valuable insights 
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into the challenges of MOOTW small-unit combat and the process of casualty generation.  

It could provide us a valuable model that could enable the process of tactical 

development.  It is the author’s opinion that the true potential of agent-based simulation 

of MOOTW combat is not in terms of generating predictions for the success of Tactic X 

versus Tactic Y, but in generating insight and understanding as to why Tactic X may be 

better or worse than Tactic Y. 

B. A GENERALIZED SCENARIO 

The idea of tactics development via agent-based simulation will be tested on an 

abstraction of the scenario described above by LtCol. Allen.  A small force armed with 

imperfect non-lethal weapons in a congested urban area guards a high value site.  Their 

implied mission is to minimize violence.  Facing them is a large, lightly armed force 

seeking to exert violence and seize the valuable site.  Assume that several tactics have 

been developed for the force in this situation and require testing.  The tactics will be 

evaluated using an AgentKit model.  To assure completeness, the tactics should be tested 

against crowds of varying composition.  Juxtaposition of tactics against crowd 

composition can be studied and evaluated using experimental design with the AgentKit 

model. 

The mission of the peacekeeping force is to bring order to an urban zone torn by 

civil disorder.  The local population is driven by profound discontent with the current 

situation.  Throughout the urban zone there are many likely targets upon which the local 

population is likely to focus its destructive potential.  Examples include a bridge crossing 

into the opposing ethnicity’s district, a supermarket to loot, and an exit gate from a large 

refugee camp.   

The peacekeepers, having limited assets, deploy small detachments armed with 

imperfect non-lethal weapons to guard each of these sites.  These weapons are 

“imperfect” in the sense that while they weapons were designed to be non-lethal, to cause 

an individual to lose the will the fight, they have nevertheless been known to produce 

lethal effects (Kenny, 2000).  The detachments are supported by reinforcements and 

support elements that can arrive in a fixed amount of time.  The policy for the 
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peacekeepers is not to wait for violence to begin but to call for support as soon as they 

notice a crowd forming.   

The crowd may present itself in two forms.  The first, the Homogenous Crowd, 

forms spontaneously without discernable leadership.  That is not to say they are not led, 

since they may have local leaders that arise from the group.  However, it does imply that 

there is no organized leadership.   

The second form, the Heterogeneous Crowd, does have a leader.  The leader is a 

motivator who arouses the crowd to violence.  He does not himself actively participate in 

the violence but continues to spur the crowd onward.  

The crowd is armed uniformly with manually thrown projectiles, such as stones, 

sticks, or bottles.   Individuals by themselves are not prone to commit violent acts but 

when they gather into a crowd, they reinforce each other’s anger over time, leading the 

aggregation to transition from a protesting crowd into a violent riot.  The crowd’s goal is 

to get to the valuable site.   

The peacekeepers have a choice of two tactics to employ should they encounter a 

violent crowd.  The first tactic is called the Reactive Tactic.  This tactic allows the crowd 

to approach but, if it turns violent, returns violent acts tit-for-tat.  If a rioter throws a 

stone, and is seen, the peacekeeper fires one non-lethal round in return.  It is hoped that 

even should the peacekeeper’s shot miss, the rioter would be dissuaded for throwing 

another rock. 

The second tactic is the Proactive Tactic.  Here the policy empowers the 

peacekeepers to make assessments of the crowd and their potential for violence.  Should 

a crowd begin to demonstrate violent potential, i.e. picking up projectile weapons and 

closing range on the guarded site, the peacekeepers may shoot at the member of the 

crowd with the greatest potential for violence once the crowd enters stone throwing 

range.  Implied in this rule is the idea that crowd agitators, even if not themselves armed, 

may contain the greatest potential for generating crowd violence (Allen, 1995).   

This tactic actively targets leaders.  Leaders, as mentioned earlier, can be the 

agitators or the first-to-act crowd member whose actions can serve to trigger others to 

action.  It is hoped that this tactic will prove capable of dissolving the crowd before it 

becomes excessively violent. 
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The peacekeeper detachment’s mission is to guard the valuable site, but in this, 

they have two other large concerns:  to ensure their own survival and, to use the minimal 

force necessary to control the crowd.  There are two measures of success, one primary, 

and the other secondary.  The primary measure is their survival until the arrival of the 

support and reinforcements.  Thus, if they survived the confrontation, it meant the site 

was successfully defended.  This implies that they will defend the site with their lives 

(possibly an unrealistic assumption).  The second measure is the amount of damage 

inflicted on the crowd.  Obviously, if there is low damage to the crowd but the 

peacekeepers are dead, this measure is meaningless.  On the other hand, to completely 

minimize damage to the peacekeepers, the solution that maximizes damage to the crowd 

at first sight is just as poor.  A balance must be struck between the two extremes.   

This scenario will be modeled as a simulation using AgentKit.  The simulation  

will be used to conduct a two factor, two level experiment.  The two factors are 

leadership and tactics, and each has two levels.   

C. GENERATING THE MODEL 

Having established the scenario, the next step is to model it.  We will apply the 

techniques of modeling CAS with agents to formulate the above scenario in AgentKit.  

The individual participants are modeled as agents with only the necessary characteristics 

that capture applicable individual behavior.  A set of rules governing the “physics” of the 

simulated reality are generated.  The agents are then placed into this simulated reality and 

allowed to interact.   

The simulation places a detachment of peacekeepers arriving at the guarded site 

as a crowd is beginning to form.  Both groups are within visual range of each other but 

beyond range of the rioters’ weapons.  The important parameters and interactions of the 

simulation are contained in Table 1.  

The entities within the simulation are all as instances of the class 

BasicCombatAgent.  It behooves us at this point to gather a better understanding of the 

specifics of this agent model. 
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Parameter Method Mean/Fixed 
Value 

Distribution Other 

Run duration Deterministic 7 minutes Na At 7 minutes support shows up. 
Movement Constant speed Set by user Na Movers moved at max speed or 0; i.e., 

instantaneous acceleration 
Weapon inter-
firing times 

Deterministic Firing rate input 
by user 

Na Example:  Non-lethal weapon fires 8 
rounds per minute. 

Hits Stochastic Dependent on 
range 

Rayleigh Each weapon has a standard error per 
meter range. 

Lethality Deterministic Hits until dead 
input by user 

na Rioters took 2 non-lethal hits to die; 
peacekeepers took 5 stones to die. 

Communication No overt Na na Rules regarding firing and movement 
included behaviors based on implied 
communication 

Sensing Cookie-cutter Input by user na Assumed congested environment:  100 
meters. 

 

Table 1.  Riot Simulation features and interactions 

 

D. BASIC COMBAT AGENT 

BasicCombatAgent is the AgentKit entity that serves as the foundation for all 

agents used in the simulation.  It serves as a repository of all the components that make 

the agent:  performance system, the effectors, the detectors and the chromosomes.  The 

detectors set consists of only a cookie cutter sensor.  The effector sensor consists of a 

mover, a shooter, a credit handler, and heat radiator.   

The mover has a color and is shaped like a sphere; i.e., it presents a circle of 

specified radius to all directions.  The shooter possesses a weapon and fires it on 

command from its rule set provided the weapon has remaining rounds.  Both the mover 

and shooter possess an object called a modular manager.  This allows the active rule of 

the effector to interact with the object whose actions it dictates.  

The credit handler allows the agent to effectively possess more than one 

chromosome set.  For this simulation a simple credit handler was devised that set the 

credited chromosome to weight 1 and all others to 0.  The method of awarding credit is 

independent of the method of determining what are credit events.  Thus, if a user wishes 

to retain a credit scheme but to award credit differently, one has simply to chance the 

credit handler.  The heat radiator will be discussed as a feature of the Rioter.   
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Damage to the agents is handled deterministically for simplicity’s sake.  The user 

may set the number of hits to the agent can take before dying, or this parameter at the 

default value of one.  Alternatively, the user can devise his or her own damage function.  

For this simulation, damage was calculated by DamageAssessor, a static class with 

references to all the weapon classes.  When hit, the agent determined what weapon had 

struck it and assigned the number of damage points given for that class weapon by 

Damage Assessor. 

As mentioned in the previous chapter, the BasicCombatAgent’s rules are found in 

the chromosomes.  Each chromosome contains a set of genes with each gene mapping 

one-to-one on the agent’s effectors.   The genes in turn hold one or more rules governing 

their effector.  In AgentKit, an individual gene will hold only rules of differing levels of 

specificity.  The user provides the combat agent with its rules after instantiation.  

While all agents are BasicCombatAgent instances, they are differentiated by the 

roles that they play.  An agent’s role is a function of his rules and resources.  The roles 

are Rioter, Riot Leader, and Peacekeeper.  Their relationship to BasicCombatAgent is 

pictured in Figure 3. 

 

 

   

 

 

 

 

 

 

 

  

Figure 3.  BasicCombatAgent and the roles it fulfills in the simulation. 
 

 

 

BasicCombatAgent 
RioterLeader 

- Heat Attracted; i.e., 
tries to stay close to 
other heat emitters 
- Not Armed 
- Very Hot  
- Plays the role of an 
agitator 

 

Peacekeeper 
- Defends site 
- Armed with Non-
Lethal Weapon 
- Two tactics 
(shooter rules): 
    Reactive 
    Proactive 
-  “Cold” to the heat 
emitting/attracted 
rioters 

Rioter 
- Two states 
- Cold state:  
    heat attracted 
    non-aggressive 
- Attracted to valuable 
site 
- Aggressive to 
peacekeepers 



 34 

E. THE RIOTER 

The rioter is a BasicCombatAgent but provided with rules and attributes that 

make it behave like a rioter.  The rioter is supposed to behave like a crowd member in 

that it acts scared when alone, but finds strength in numbers.  When enraged, her/she 

throws rocks at the peacekeepers.  Modeling the rioter required finding a way to have 

groups of them mimic the behavior of a rioting crowd.  The first step was to look at the 

individuals in the crowd as being thermodynamic particles possessing different states as a 

function of their temperature.  The rioters generate, emit, and absorb heat via their heat 

radiator effectors.  Groups of rioters start in a cool state but become “hotter” the longer 

they congregate until individuals “boil over” into a hot, violent state. 

What then are the “thermodynamics laws” of this simulation?  Heat absorption, 

loss, and emission were adapted from physics.  The temperature scale is continuous with 

range [0, 8).  The agents, in the absence of another adjacent heat source, generate just 

enough heat to maintain a temperature of 10 degrees.  They lose heat via emission in 

accordance with Stefan’s Law (proportional to quartic of the temperature).  The Stefan-

Boltzmann’s proportionality constant was replaced with a tuning factor to reduce the 

amount of heat lost at each time step.  The heat the agents receive from other agents is in 

inverse proportion to the square of the range.  Thus, the rioters only got hot when several 

got in close proximity of each other. (Sear, 1976) 

Further, a tuning factor was used to control the proportion of absorbed heat the 

agent was allowed to use.  In essence this tuning factor served as a measure of the 

crowd’s acceleration towards a boiling point.  This meant that the small “crowds” 

actually used in the simulation could be made to riot.  Another use for this tuning factor 

was to model the desire to avoid the peacekeepers.  By making this factor negative, the 

peacekeepers became heat sinks for any rioters close to them.   

As mentioned earlier, a rioter has two states:  passive and aggressive.  The rioter’s 

current state is a function of its temperature.  A rioter’s implied goal is to maximize its 

temperature when in the passive state and when in the aggressive state to keep it above 

the “boiling point”.  An arbitrary temperature of 100 was set as the state transition point.  

When at a temperature in the range [10, 100], the rioter was governed by a drive to move 
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towards heat.  In this state they were non-aggressive to the peacekeepers.   Once above a 

heat level of 100, their movement rule was to move towards the high value site.  The 

firing rule was to throw rocks at the nearest peacekeepers. 

Rioters engage peacekeepers with rocks.  RockThrower, the object that represents 

this function, has a firing rate of 12 rocks per minute with a maximum range of 50 

meters.  The rock impacts are modeled with a Rayleigh distribution with a rate of 0.033 

meters per meter range.  This puts the p-hit against a circle of 0.5 radius at 50 meters at 

0.045, or roughly a one in 22 chance of hitting a man’s torso at 50 meters. (Wagner, 

1999)   

The rioters can take one hit from the peacekeepers non-lethal weapons with no 

degradation in function.  However, since the heat radiator also plays the role of a credit 

scheme, where the measure of credit is the current temperature, then being struck is a 

negative credit event.  Thus, one hit brings the rioter’s temperature down to 10 degrees, 

causing it to become passive again and invoking its flight rule.   

Being hit also degrades the rioter’s ability to absorb heat by reducing the heat-

absorption tuning factor so that it will take them much longer to warm up.  A near miss 

causes a heat drop of a tuning factor multiplied times the damage points of the weapon 

class.  If an agent is barely above the boiling point then a near miss will cause it to shift 

to passivity again.  However, if the rioter is very hot, he will likely remain above the 

transition point but be vulnerable to any additional near misses.   

F. THE RIOT LEADER 

The riot leader is essentially a rioter stuck in the passive state.  It is never 

explicitly aggressive towards the peacekeepers.  It is always heat attracted.  However, its 

heat radiator object is different than the rioters in that it radiates intense heat 

continuously.  It tries to maintain its temperature at 500 degrees.  Thus, it mimics the 

agitators that LtCol. Allen discussed.  It acts as a catalyst in precipitating the “boiling 

over” of the crowd. 

The riot leader “dies” at one hit.  This was a crude way to model LtCol. Allen’s 

tactic of using a snatch team to remove crowd agitators.  Near misses reduce his 
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temperature in identical fashion to the rioters but in the next heat calculation iteration its 

temperature restarts its exponential climb to 500 degrees. 

G. THE PEACEKEEPER 

The peacekeeper has a single state.  It uses a defensive movement algorithm that 

would model the behavior of troops around a defended site.  This rule requires its 

peacekeeper to stay between three and six meters from the defended site.  The 

peacekeeper is attracted towards the enemy and repelled from other peacekeepers.  The 

expected behavior is that if no enemy were present then two peacekeepers would end up 

on opposite sides of the guarded site.  If one peacekeeper was guarding the site and there 

were enemy present, it would place itself between the guarded site and the enemy.  With 

more than one peacekeeper and an enemy presence, the behavior results in a combination 

of these two scenarios. 

The peacekeeper is modeled as having some body armor protection:  a helmet, 

face shield, and flak jacket.  This allows it to die only after the fifth stone hit.  Heat is not 

relevant to this agent so near misses have no significance.   

The peacekeeper is armed with an imperfect non-lethal weapon. This simulates a 

single shot rubber bullet round as fired from the M203 grenade launcher.  Since there is 

no specific rate of fire for this round in the literature, a rough estimate of 8 rounds per 

minute was made based upon the author’s infantry experience.   The weapon was 

arbitrarily assigned an error of 0.011 meters per meter of range.  This resulted in a 

probability of hit against a rioter at 50 meters, based on the Rayleigh distribution, of 

0.323.  The weapon’s imperfect lethality is modeled by making the second impact on the 

same target deterministically lethal. 

As mentioned earlier the peacekeepers have a choice of tactics.  These represent 

the Rules Of Engagement (ROE) that would be assigned by higher command authority.  

ROE can be permissive or restrictive.  The Reactive Tactic is representative of Restrictive 

ROE.  It requires the peacekeeper to fire one non-lethal at the most recent rock thrower 

detected.  For the purposes of the simulation a 50% error was applied to this process to 

simulate the “fog of war”, that is, confusion, mistakes, distractions, and interrupted line 

of sight.   
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The Proactive Tactic represents permissive ROE.  It allows the peacekeepers to 

engage the greatest threat that demonstrates immediate intent to do harm.  In this 

simulation this meant identifying the rioters who were already above 100 degrees and 

within rock throwing range.  The algorithm then picked the hottest rioter to engage 

subject to a 50% error.  The error made it feasible occasionally not engaging any targets 

at all.  This is seems reasonable, since it can be interpreted to simulate how some troops 

may freeze in indecision.  It is, however, relatively rare.  A single peacekeeper facing five 

violent rioters has a one in 125 chance of doing nothing.  In initial test runs of this rule, 

one behavior noted was that the rule allowed crowds to occasionally get close and 

overwhelm the peacekeepers.   

Looking deeper into the results and the simulation's animation revealed that even 

at close range (as expected) the peacekeepers would attempt to engage the hottest rioter, 

even if it was not the one firing at them.  The rule failed to capture the nature of self-

preservation actions of troops under fire.  Thus, a caveat for self-protection was added to 

the rule, which allowed the rule to engage the hottest until a rioter came within the self-

protection range of 10 meters.  At this point the peacekeeper engages the closest rioter.   

H. A TYPICAL SIMULATION RUN 

After extensive testing of the rules and the software, a setting was established for 

the simulation runs.  The crowd consists of seven individuals:  either six rioters and a 

leader, or seven rioters.  The peacekeeper detachment consisted of two peacekeepers.  

The fixed run time was set at seven simulation minutes.  The crowd begins at scattered in 

uniform random fashion in a 20 by 20 square around a fixed point.   

This fixed point is set at a distance of 70 meters from the valuable site.  Given that 

the rioters begin in a passive, heat attracted state, they spend the first few minutes moving 

closer to each other and getting hotter.  As the rioters begin to transition to the aggressive 

state, they begin to move towards the valuable site.  When within stone throwing range of 

the peacekeepers, they begin to throw stones.  There are two kinds of results from the 

ensuing combat. 

The most common result is a victory for the peacekeepers.  These encounters 

unfold in a typical fashion.  As rioters in the aggressive mode take direct hits from a 
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peacekeeper, their temperature precipitates to 10 degrees and they begin to flee.  The 

same effect can occur to a rioter from a near miss depending upon his current 

temperature.  As rioters begin to attrite, the remaining rioters begin to lose heat since they 

have fewer of their fellows around them.  Additionally, they come under the heat sink 

effect of the peacekeepers.  It was not unusual to observe in some of the runs, that rioters 

would transition to passive mode and flee simply due to heat loss.   

These conditions stack the odds against the rioters.  However, circumstances did 

arise when, through many misses by the peacekeepers, the rioters were able to close with 

the peacekeepers in mass.  This was the problem with the original reactive rule.  When 

the rioters achieved this condition, the higher hit probabilities due to the close range, their 

greater numbers, and higher rates of fire allowed them to overwhelm the peacekeepers. 

For every run, the results of the combat were printed to a text file.  Additionally, 

the state of the pseudo-random number generator seed was dumped to a file.  Thus, each 

run was essentially independent.  Each variable setting was allotted 40 runs for a total of 

160 runs.  Upon completion of all the runs, the text files were examined and the data 

manually entered into Excel files.  

An animation package was used for debugging and to allow qualitative 

interpretation of the results.  The animation package was very simplistic.  A light bulb 

represented the valuable site and the rioters and peacekeepers were red and blue dots 

respectively.  The riot leader was animated as a tiger head.  A sample of the animation is 

in Figure 4. 

 At this point we have gained an understanding of the simulation model and the 

data it generates.  The next chapter will provide the experiment’s design, the analysis of 

the experiment’s results, and a discussion of both these results and the methodology used 

to generate them. 
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Figure 4.  A snapshot of the animation of the Riot Simulation in mid-run.  The two large 
blue dots are the peacekeepers guarding the valuable site as represented by the lightbulb.  
The small red dots are rioters and the tiger head is the riot leader.  Not shown by the 
animation is the firing process. 
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IV. SIMULATION RESULTS 

 

This chapter addresses design of the experiment, the experimental results, and the 

analysis of these results.  The experiment had two factors and two levels for a total of 

four treatments.  The resulting data set was analyzed using two-factor ANOVA.  The data 

showed that the proactive tactic was superior to the reactive tactic.  Riot leadership did 

not prove statistically to be a significant factor. 

A. DESIGN OF EXPERIMENT 

The two factor two level experiment was designed with intent of analysis via two 

factor analysis of variance (ANOVA) with multiple observations per treatment or factor-

level combination.  The number of observations at each treatment was set at forty.  The 

experimental model follows. 

We draw on Devore (1994) for the essentials of two-factor ANOVA.  He defines 

the following terms.  Let I be the number of levels of the first factor or factor A, J the 

number of levels of factor B, and K the number of observations at each treatment.  Then, 

let Xijk be the kth observation at level i of the first factor, and level j of the second factor.  

Then, 

 

Xijk = µ + a i + ßj + ?ij + eijk , i = 1, 2, j = 1, 2, k = 1, ..., 40. 

 

The expected response, the grand mean over all levels of all factors, is µ.  ai is the 

effect due to the A at level i, ßj is the effect of B at level j, ?ij is the interaction parameter, 

and eijk is the error term for the kth observation at treament ij.  We assume that the error 

terms are independent and normally distributed with variance s 2.  If the effects are 

additive, then all the ?ij’s are 0.  There are three sets of hypothesis that arise from this 

model: 
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 1) HoAB: ?ij = 0 for all i, j    versus    HaAB:  at least one ?ij ? 0 

 2) HoA: a1 = ... = a I = 0       versus     HoA: at least one ai ? 0 

 3) HoB: ß1 = ... = ßI = 0       versus     HoA: at least one ßi ? 0 

  

The hypothesis of importance here is the null hypothesis HoA.  Specifically, the 

null hypothesis states there is no difference between the tactics employed.  We desire to 

test to confidence level for a  = 0.05.  The interaction parameter and the significance of 

leadership are also of interest and may yield further understanding of the process we are 

modeling. 

B. OUTPUT ANALYSIS 

Let us review our two MOEs:  MOE 1 is the expected number of hits taken by a 

peacekeeper; MOE 2 is the expected number hits taken by a rioter.  The results of the two 

MOE’s over the four scenarios are tabulated below.  We see clearly that there are obvious 

differences between the two tactics.   

 

 MOE 1 - Avg. Friendly Hits   MOE 2 - Avg. Enemy Hits  

  Leader     Leader  

  No Yes    No Yes 

Tactic React 2.09 1.48  Tactic React 0.90 0.97 

 Proactive 0.56 0.66   Proactive 0.45 0.54 

 

Table 2.  MOE Results 

 

While the means are useful and provide observational insights, it is important to 

approach these results with an understanding of their statistical significance.  The 

previously described ANOVA model was applied to the output data.  S-PLUS 2000 

provided the ANOVA reports shown in Appendix 2. The hypotheses and their p-values 

are summarized below. 
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         F-statistic           p-value         Reject Ho? 
Hypothesis MOE 1 MOE 2 MOE 1 MOE 2 MOE 1 MOE 2 

HoAB 3.92 0.09 0.05 0.76 yes no 

HoA 42.16 88.16 0.00 0.00 yes yes 

HoB 2.03 2.82 0.16 0.10 no no 

 

Table 3.  ANOVA Results Summary 

 

The results showed that for both MOE’s, the possibility that the two tactics had 

the same effect was essentially zero.  We can safely reject the null hypothesis HoA.  The 

other hypotheses are a mixed bag.  While the graphs below show that there are some 

conjectures we can make about the effect of crowd leadership, we cannot safely reject the 

hypothesis that leadership alone has no effect for either MOE.  For MOE 1 the leadership 

did have an effect but only as an interaction with tactics.  

Graphing the means leads to some interesting observations.  In three of the four 

scenarios leadership resulted in having a higher level of confrontation, as measured by 

the number of hits on both sides.  While the differences were not statistically significant, 

the trend appears compelling.  What is surprising is that the reactive tactic had a better 

result against a led crowd than against a crowd lacking leadership.  In retrospect this may 

result from the led crowd having only six stone throwers versus seven for the un-led 

crowd.  The reduction in fighters could also explain the increased number of hits per 

rioter when the leader is present. The leader never gets fired upon with a reactive tactic 

since it never throws stones.   And, since the reactive tactic does not allow firing unless 

fired upon, from the perspective of peacekeepers employing reactive tactics, leadership in 

the crowd ultimately meant one less stone thrower. 
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Figure 5.  Average Hits per peacekeeper as a function of the presence of crowd leadership 
and peacekeeper tactic.  Note the unexpected result of reactive tactics performing better 
against led crowds than those without. 
  

 
Figure 6.  Average Number of Hits per Rioter.  Note that the presence of the riot leader 
resulted in slightly more casualties for the rioters.  This difference though proved not to 
be statistically significant. 

 

Trading a riot leader for a rioter instead of augmenting the crowd with a leader 

was a decision made early on because the effect that was of concern was heat generation.  

Keeping the rioter and the leader would result in an obvious “heat” advantage to that 

level.  Surrendering a stone thrower for a leader seemed to be a way of measuring the 

worth of the leadership.  Additionally, making the leader a non-participant forced a 
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dichotomy between tactics that counter linear threats, the commensurate response, and 

tactics that seek to unravel the threat.   

The result of this decision, coupled with small representative crowds due to run 

time limitations, was that adding a leader meant surrendering 14% of the firepower of the 

rioters.  Ultimately, there is no reason to believe in the real world that riot leaders will 

never be active participants themselves.  Also, even if they are non-participants, the 

numbers in large crowds are such to make the individual firepower contribution of a 

leader insignificant.   

This skewing effect probably contributed to the fact that no effect for leadership 

was observed.  The small number of entities involved may have also had a part in this.  

These smaller numbers probably contributed to greater variability per run, causing what 

appears to be a significant upward trend in casualties due to leadership (ignoring the 

skewed case) to be statistically insignificant.  

To test this idea, a t-test was conducted by pooling the MOE 2 results into two 

groups:  leadership and no leadership.  The results are tabulated below.   

 

Comparing # hits in MOE 2 No Leader Leader 

Mean 0.68 0.76 

Variance 0.13 0.14 

Observations 80 80 

Pooled Variance 0.14  

Hypothesized Mean Difference 0  

Df 158  

t Stat -1.35  

P(T<=t) one-tail 0.09  

t Critical one-tail 1.65  

P(T<=t) two-tail 0.18  

t Critical two-tail 1.97  

 
Table 4.  Results of t-Test to examine if there still was a significant effect from leadership 
using only the MOE 2 results.  Though provocatively low, the p-value does not allow one 
to reject the null hypothesis of no differences between the two cases. 
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While, it was hoped to be able to show a difference statistically, it was not the 

case.  Perhaps this simulation model as currently configured fails to adequately represent 

the effect of crowd leadership.  In light of the previous arguments, one can reasonably 

speculate that the leadership effect in this model is real and that given further 

experimentation the effect could be better demonstrated.  If this is true, then the 

interaction term may actually be zero and only presented itself due to the skewed results 

from the lower firepower of the led crowd facing the reactive tactic.   

The situation is reversed for proactive tactic.  The proactive tactic attempts to 

anticipate violent action.  Since the riot leader acts as a catalyst to the state transition, and 

the tactic employs a time step scanning process, the riot leader improves the crowd’s 

ability to reach the transition point in large numbers prior to intervention by the 

peacekeepers.  We can argue that it was this effect that led to an increase in violence for 

both MOE's when the riot leader was present, even though the means were not 

statistically different. 

From operational experience, we know that leadership among the rioters will 

present a significant challenge to the peacekeepers (Allen, 1995).  While the simulation 

failed to show that in this specific scenario, it did show that proactive tactics aimed at 

interrupting the process of riot formation were very successful at both protecting the 

peacekeepers and reducing the casualties of the rioters. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

 

This thesis developed and implemented an agent-based MOOTW small-scale 

combat modeling methodology.  Using this implementation, called AgentKit, this thesis 

generated an increased understanding of the riot control problem.  Using a few simple 

rules and the analogy of heat attracted particles, we generated a model of a riot control 

problem.  By serving as a vehicle for experimentation, the model demonstrated the 

importance of violence supremacy in MOOTW encounters.   

Agent-based simulation is a valuable method for the modeling of MOOTW small-

scale combat.  Using this methodology, researchers can generate complex behaviors from 

simple, reactive entities.   Researchers can use these simulations to test ideas of how 

entities function in complex systems and evolve useful models describing their behavior.  

The simplicity of these individual models and the rules that govern their interactions 

grant transparency to the model.  Transparency is an important attribute in agent-based 

simulation as it facilitates both the analysis of the model and the communication of its 

results.   Agent-based models are best used as vehicles to improve intuition rather than as 

means to generate predictions.   

In large-scale scenarios, the actions of individuals can be aggregated, as is done in 

most current warfare simulation.  In MOOTW, individual actions have much greater 

potential for far-reaching impact.  Agent-based models show the greatest potential for 

modeling the complex, small-scale scenarios of MOOTW where the actions of 

individuals are important.  In addition to the analysis done above, the model developed 

here can be used to address other questions:  what is the effect of adding another rioter to 

the riot leader scenario; do the results change when we vary the scale (20 versus 70); if 

force ratio is a predictor of outcome independent of scale, at what force ratio per tactic do 

the rioters always win; given such a force ratio, can we devise new tactics that will 

improve the situation for the peacekeepers?   

The benefits of this kind of simulation are not so much in the answers they yield, 

but in the questions that their study generates.  The results may seem obvious to military 

leaders with MOOTW operational experience.   However, while the quantitative results 
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seem to validate some known aspects of riot control, the intent of the simulation was not 

to prove that proactive tactics are better than reactive tactics.  The true intent of the 

simulation was to increase insight into this type of MOOTW scenario.  By modeling at 

the entity level, the researcher is forced to study the scenario from the bottom up.  

There are pitfalls in the use of agent-based simulation models.  There is a 

temptation to perpetually increase the fidelity of the simulation, increasing the 

complexity of the agents, and the richness and diversity of the rules.  This can lead to two 

different kinds of problem areas: transparency and extrapolation. 

Transparency in agent-based simulation relates to the simplicity of the 

individuals, their rules, and the physics of their simulated world.  While the aggregate 

behavior of these kinds of models may be complex, transparency of the individuals and 

their relationships contributes to understanding the roots of the complex behavior.  As the 

modeler makes the individual agents more complex, the understanding of the cause and 

effect relationships in the model decreases.   

Perhaps the most difficult part of developing an agent-based simulation model is 

finding the simple set of rules that make a useful first-order approximation of human 

behavior.  It will always seem easier to add more rules, more features, and more 

functionality to the model in order to try and generate more realistic behavior.  This will 

lead to more complexity but not necessarily more realism.  A careful balance must be 

struck between the complexity necessary to capture a behavior and the simplicity 

necessary to understand what is happening in the model.  Transparency has the additional 

benefit of aiding the researcher in conveying results to other parties.  Ease of analysis for 

the researcher translates into ease of understanding for the end user. 

The second problem is extrapolating the model results beyond its assumptions.  

Simulations of people can yield such seemingly realistic results, particularly if 

supplemented with animation, that users may be lulled into the belief that model is a 

faithful replica of reality.  It must be kept in mind that merely because an agent-based 

model mimics a human systems behavior in a certain setting does not mean that in 

different settings the response will be valid.  Use of these models for predictions must be 

done with great caution.  Again, to paraphrase Axelrod (1997), the role of agent-based 
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simulations is not to predict the behavior of the system being modeled but to aid in its 

understanding. 

Perhaps the greatest use for agent-based simulation will be in its synergistic 

application with other modeling methods.  Analytical combat models, such as Many-on-

Many stochastic duels using Semi-Markov chains, have as yet unexplored potential in 

modeling crowd control problems.    Combining one or more analytical models of a 

MOOTW scenario with an agent-based simulation could yield far more insight into the 

process than either method alone.  

In all likelihood, MOOTW will continue to be the environment requiring the most 

frequent application of U.S. military forces.  It is unlikely to get less challenging.  Agent-

based modeling provides an important tool for combat modeling and experimentation in 

the MOOTW small-scale combat milieu.  It is also the only tool currently available.  

Agent-based simulation deserves continued study and exploration as a valuable method 

for the modeling of MOOTW small-scale combat.  
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APPENDIX.  SOFTWARE USED IN THIS THESIS 

 

 All original software used in this simulation was written by the author in Java. 

Data generated by the simulation was analyzed using both Excel 2000 and S-PLUS 2000.  

The code for the simulation is contained in a package called AgentKit.  As mentioned in 

the body of the thesis, AgentKit is an extension of Simkit (Stork, 1996).  The code for the 

simulation’s animation was a modification of Prof. Arnold H. Buss’s animation package.  

This code is found in the package animationTest.  The classes in these packages are listed 

below, AgentKit first, followed by animationTest.  All the source code can be obtained 

by contacting Prof. Buss via his web page at http://diana.or.nps.navy.mil/~ahbuss/. 

 
Directory of H:\AgentKit 
07/31/00  11:13a                 7,732 AgentReferee.java 
07/19/00  02:50p                 1,401 AgentRefereeManager.java 
09/06/00  03:49p                 2,326 AgentSimData.java 
08/19/00  03:17p                 8,826 BasicCombatAgent.java 
08/21/00  12:41p                 4,759 BasicCombatAgentMover.java 
08/21/00  04:16p                 2,468 BasicCreditHandler.java 
08/15/00  05:38p                 2,077 BasicSensorMessageGenerator.java 
08/12/00  09:50a                 2,451 BasicShooter.java 
08/21/00  12:45p                 3,913 BasicVisualSensor.java 
07/28/00  03:35p                 2,947 Chromosome.java 
09/05/00  11:48p                   921 CombatAgentContact.java 
08/21/00  10:19a                11,443 CombatAgentMediator.java 
08/21/00  04:16p                   113 CreditHandler.java 
08/02/00  03:28p                 2,051 CreditRule.java 
08/07/00  04:13p                 1,460 DamageAssessor.java 
08/21/00  12:37p                   543 Detector.java 
08/21/00  12:37p                   571 Effector.java 
08/16/00  11:22p                 2,087 FireArm.java 
07/25/00  09:36a                 4,466 Gene.java 
08/18/00  04:58p                 8,988 HeatRadiator.java 
08/13/00  10:13p                 7,957 HeatRule.java 
08/08/00  11:26p                    56 LethalWeapon.java 
08/16/00  11:21p                 4,039 Message.java 
03/29/00  02:50p                 1,233 MessageEvent.java 
08/23/00  03:15p                 4,801 ModularMoverManager.java 
07/23/00  10:20a                 2,296 ModularShooterManager.java 
08/21/00  10:21a                 4,018 ModularWeaponManager.java 
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07/25/00  02:46p                   307 Mortal.java 
08/15/00  05:26p                 2,125 MoverRule.java 
08/15/00  05:27p                11,027 MoverRuleDefend.java 
07/31/00  09:45a                   546 MoverRuleDoNothing.java 
08/08/00  11:44p                 3,870 MoverRuleFlee.java 
08/21/00  01:03p                 3,194 MoverRuleFleeFiring.java 
08/15/00  05:27p                11,885 MoverRuleFollow.java 
08/21/00  12:04p                12,947 MoverRuleHeatAttracted.java 
08/08/00  11:49p                 5,360 MoverRulePath.java 
08/08/00  11:50p                 6,987 MoverRulePursuit.java 
08/18/00  04:18p                 3,985 MoverRuleRandom.java 
08/02/00  11:48p                 2,056 NonLethalFireArm.java 
07/28/00  03:26p                    59 NonLethalWeapon.java 
08/21/00  12:37p                 5,901 PerformanceSystem.java 
08/21/00  09:22a                   648 RiotLeaderHeatRadiator.java 
08/09/00  10:00p                   357 RiotLeaderHeatRule.java 
07/28/00  02:24p                    54 RiotWeapon.java 
08/18/00  03:59p                   114 Role.java 
07/23/00  02:37p                   944 Rule.java 
05/02/00  03:56p                   224 SensorMessageGenerator.java 
07/31/00  12:31p                   434 Shooter.java 
08/10/00  03:16p                 3,705 ShooterRule.java 
07/31/00  09:44a                   557 ShooterRuleDoNothing.java 
08/21/00  10:20a                 6,661 ShooterRuleNonLethal.java 
09/06/00  03:50p                 7,327 ShooterRuleNonLethalImproved.java 
08/08/00  11:28p                 5,894 ShooterRuleRandom.java 
08/07/00  03:36p                 7,418 ShooterRuleRioter.java 
08/11/00  04:10p                 3,984 ShooterRuleRioterRandom.java 
08/12/00  12:04a                 8,737 ShooterRuleROE.java 
08/02/00  11:54p                 2,073 StoneThrower.java 
08/18/00  03:59p                   612 TerrainObject.java 
08/21/00  03:12p                   781 UniformGenerator.java 
07/23/00  11:04p                   871 Weapon.java 
              60 File(s)        217,587 bytes 
 
Directory of H:\animationTest 
09/12/00  10:02a                13,099 AgentAnimationTest.java 
09/12/00  11:03a                11,441 AgentAnimationTest2.java 
09/12/00  10:16a                11,370 animationDemo.java 
08/16/00  11:04p                 4,431 AnimationTest.java 
08/16/00  04:03p                 2,203 PingPanel.java 
08/18/00  04:50p                 3,862 PingThread2.java 
08/16/00  04:08p                 2,044 RandomLocationMoverManager.java 
               7 File(s)         48,450 bytes 
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